If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1-x^2)/x^2=1
We move all terms to the left:
(1-x^2)/x^2-(1)=0
Domain of the equation: x^2!=0We multiply all the terms by the denominator
x^2!=0/
x^2!=√0
x!=0
x∈R
(1-x^2)-1*x^2=0
We add all the numbers together, and all the variables
-1x^2+(1-x^2)=0
We get rid of parentheses
-1x^2-x^2+1=0
We add all the numbers together, and all the variables
-2x^2+1=0
a = -2; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-2)·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-2}=\frac{0-2\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-4} =-\frac{\sqrt{2}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-2}=\frac{0+2\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-4} =\frac{\sqrt{2}}{-2} $
| -2y+2=9 | | 3/7=w/13 | | 6x-15=x-50 | | 3/7=y/13 | | 6=n+-5*2 | | 2+6=n-4 | | 15+w+(—12)=15–12+w | | 6=n+5*2 | | 17/7=u/11 | | (x+4)^2=14 | | -6(x-19)=-24 | | 20=2(3x-1)=x-6 | | 6z=5^2 | | Y=10x^2+2x-0.5 | | 10+3x=-15 | | (7/6)y=3 | | 34-25/6x=16 | | 44-4a=64 | | 150m-125m+33,775=37,700-150m | | 2x^2+36x+170=Y | | |x-7|=3x-1 | | 36+90+2x=180 | | h45+78=168 | | f(7)=3(4−7) | | 9,1m=4/3 | | (7a+9)(a+7)=47 | | −3(9f+2)+10=40 | | 7/2x+1/2x=21/1+9/2 | | 2x÷15=40 | | 5(3x-7)=115 | | h•45+78=168 | | 2x÷5=40 |